
Field Programmable Gate Arrays with
Natural Language Processing

A Case Study

by Gregory F. Roberts, Jai Evans, and Keith Goddard
groberts@rosoka.com , jevans@rosoka.com, k.goddard@gemasecure.com

Introduction
In this paper we examine how using field
programmable gate arrays (FPGA) with
Natural Language Processing (NLP)
software can increase throughput speeds by
a factor of over 30 with 133x less power
consumption as compared to a traditional
enterprise-scale infrastructure using Cloud
resources.

NLP
Natural Language Processing (NLP) is a
branch of linguistics concerned with the
interactions between computers and human
language, in particular how to program
computers to process and analyze large
amounts of natural language data. For the
purposes of this experiment, we are using
the industry-standard, enterprise-scale
entity extraction engine by Rosoka
Software. This entity extraction engine is a
recursive, finite state automata. The
Rosoka extraction engine is written in Java.
The engine is controlled by the Rosoka
LxBase. The LxBase is a data component
that contains all of the entity and
relationship definitions, language and

domain specific dictionaries, entity
extraction rules, and relationship expansion
details. With a single pass on input, Rosoka
provides language identification, entity
extraction, relationship extraction, document
level multivector sentiment analysis metrics,
and entity level multivector sentiment
analysis metrics. A user is guaranteed the
same results if using the same engine and
same LxBase on multiple passes on the
same data, regardless of operating system
or hardware configuration.

FPGA
Field programmable gate array (FPGA) is a
hardware circuit that can be programmed to
carry out one or more logical operations.
FPGAs are sets of integrated circuits
grouped in an array of programmable logic
gates, memory, or other elements. With a
standard computer processor, such as a
CPU in a laptop or server, the circuits are
fixed. They cannot be reprogrammed. With
an FPGA, there is no predetermined
processor. The user programs the hardware
circuit or circuits. The programming can be
a single, simple logic gate (an AND or OR
function), or it can involve one or more
complex functions, including functions that,

Rosoka Software, Inc. 950 Herndon Parkway, Suite 370, Herndon, VA 20170, US www.rosoka.com

mailto:groberts@rosoka.com
mailto:jevens@rosoka.com
mailto:k.goddard@gemasecure.com
http://www.rosoka.com


together, act as a comprehensive multi-core
processor. In the past programming FPGAs
could only be accomplished with a statically
compiled computer language like Assembler
or C. An interesting feature of the
GemaSecure application of FPGA is the
ability to embed non-statically compiled
languages, such as Java, on the FPGA.
This feature is what enables Rosoka to be
able to run on the FPGA. Another
interesting aspect is that multiple
applications can be integrated on the FPGA
to run concurrently and maximize hardware
usage while still being performant.

Experiment
In our experiment, we used a corpus of
276MB of online newswire documents
collected with the Rosoka News online
news aggregation reference architecture.
Rosoka News has a set of over 200 seed
URLs that collect news from approximately
30 different languages from all over the
world. The corpus consisted of 77,807
documents. The documents ranged in size
from 46 bytes to 331KB. The corpus
represents an average day of news
aggregation for Rosoka News reference
architecture.

The experiment was conducted through six
runs of the Rosoka News Corpus on 3
different architectures. The Rosoka
Extraction Engine is thread safe and
throughput performance can be increased
by expanding the number of processing
threads. One set of runs were completed
using a single thread for Rosoka
processing. Another set of runs were
completed using 4 threads for Rosoka
processing.

The Laptop Runs were done using a
MacBook Pro running macOS Catalina
Version 10.15.7 with a 2.9 GHz 6-Core Intel
Core i9. The laptop had 32GB of 2400 MHZ
DDR4 RAM. The Cloud Runs were done on
AWS m6i.4xlarge using AMZ Linux with a
16 core CPU that had 64GB RAM. The
FPGA Runs were done on the proprietary
GemaSecure FPGA hardware with Xilinx
XCZU11EG MPSoC with 32GB of 2400
MHZ DDR RAM and a proprietary FPGA
bitstream image to accelerate processing
functions though a LLVM open architecture
API.

Each run consisted of processing the
Rosoka News Corpus using the Rosoka
SDK Java API. The elapsed time from input
ingest through final output was calculated
and stored for each document. Aggregate
metrics were then calculated for each run.
We wanted to ensure that our comparisons
were on Rosoka processing, not disk i/o, so
once the Rosoka Extraction Engine was
spun up, it was primed with a dummy run of
several documents. The dummy
documents were not factored into the final
timing metrics for any of the official runs.
For the multithreaded runs, all threads were
processed in parallel. Since each thread
completed at a different time, we took the
longest processing thread as the aggregate
time for these runs.

Table 1 shows the results of the three runs
with the Rosoka Extraction Engine using a
single processing thread.

Rosoka Software, Inc. 950 Herndon Parkway, Suite 370, Herndon, VA 20170, US www.rosoka.com

http://www.rosoka.com


Aggregate Time MB/Hour

Laptop 2.90 hours 69.75

Cloud 2.63 hours 76.92

FPGA 0.082 hours 2467.56
Table 1: Rosoka Timing Metrics, Single Thread

Single thread results between the Laptop
and Cloud processing shows the difference
between using additional memory resources
to increase throughput processing volumes.
Doubling the RAM produces a 1.10 times
increase in the throughput processing
volumes. While the Rosoka architecture is
memory intensive, there is an inflection
point where adding additional RAM provides
diminishing returns. The minimum amount
of RAM necessary for the Rosoka
Extraction Engine to process with
reasonable results is 8GB. Prior
performance testing indicates that 24GB of
RAM allocated to the JVM is the optimal
amount of RAM, before performance
improvements start to fall off. With the
Laptop runs, the entire machine has 32GB
of RAM, some of which is allocated to the
OS and other machine resources. The 1.10
times increase on the Cloud run is due a full
24GB RAM allocation to the JVM, with the
remaining RAM used for the other Cloud
resources.

Single thread results between the Cloud
and FPGA run demonstrates the improved
processing performance of using a
customized, virtual multi-core processor
tuned to Rosoka computational needs. The
FPGA customization produces a 32.10

times increase in throughput performance
over the Cloud run. The performance boost
was due to the FPGA’s ability to cut through
and streamline Rosoka computationally
intensive processes.

Rosoka was designed to be thread safe so
a second set of runs using 4 threads to
determine if additional threads would affect
the FPGA performance as compared to the
Cloud architecture were examined. Table 2
shows the results of the three runs with the
Rosoka Extraction Engine using 4
processing threads.

Aggregate Time MB/Hour

Laptop 1.21 hours 185.84

Cloud 0.88 hours 235.18

FPGA 0.038 hours 5324.74
Table 2 : Rosoka Timing Metrics, 4 Threads

Comparing the throughput increase
between the single thread Cloud run and
the multi-thread Cloud run shows a 3.10
times increase in throughput. This makes
sense; adding 3 additional threads should
increase the throughput 3 times. Adding
additional threads over the 4 tested to the
tested Cloud infrastructure could provide
additional performance, however as the
JVM RAM resources are consumed the
additional performance would trail off.

Comparing the multi-thread Cloud run to the
multi-thread FPGA run provides a 22.64
times increase in throughput.

Rosoka Software, Inc. 950 Herndon Parkway, Suite 370, Herndon, VA 20170, US www.rosoka.com

http://www.rosoka.com


Conclusion
The Rosoka extraction engine on the
GemaSecure FPGA provides upwards of 30
times throughput performance
enhancements with a 1u footprint and 75W
of power consumption. While the exact
amount of power consumption on the AWS
m61.4xlarge is not directly available,
Benjamin Davy provides some indications
that the m61.4xlarge consumes at least
500W with CPU intensive processes, like
Rosoka.
(https://medium.com/teads-engineering/estimating-aw

s-ec2-instances-power-consumption-c9745e347959)

That means that for comparative
performance, one would need to spin up
and manage almost an entire rack of 20
m6i.4xlarge AWS servers that consumes
10,000W compared to similar performance
of the GemaSecure 1u FPGA that
consumes 75W. The Cloud infrastructure
would consume 133x more power than the
GemaSecure FPGA.

All of the comparisons were done using a
single instance of an out-of-the box Rosoka
Extraction Engine implementation with the
Rosoka SDK product. To expand the Cloud
infrastructure to have similar performance to
the FPGA performance, additional Rosoka
Extraction Engine instances are necessary.
This necessitates load balancing resources
to facilitate communication between the
servers.

The GemaSecure FPGA with the Rosoka
Extraction Engine installed will provide a
customer with increased throughput speeds,

with a smaller hardware footprint and lower
power consumption than building out a
traditional enterprise-scale hardware
infrastructure.

The Rosoka/GemaSecure combination
provides a more secure solution that can be
installed and maintained behind a user’s
own firewall, all with a 1u footprint with only
75W of power consumption. This enables
users to move their computational
processing needs further afield without
having to worry so much about where the
power is coming from.

Further Research
Rosoka was built on a Java platform to
enable it to run on any architecture where a
JVM is available without the need to
compile to a specific architecture. This
allows Rosoka to run on a wide array of
hardware platforms from a Raspberry Pi to
a Cray Supercomputer. The results of this
case study indicates that further
performance improvements could be
realized by rearchitecting some of the
algorithms to take advantage of the
GemaSecure FPGA architecture.

Historically, applications were deployed on
general purpose CPU architectures. As
performance increases were found by using
GPUs, we believe that FPGAs have been
underutilized in performance intensive
applications. The revolutionary ability to run
Java on FPGAs demonstrates that
performance enhancements can be realized
with the Rosoka/GemaSecure combination
to provide near-real time processing of large
volumes of narrative texts.

Rosoka Software, Inc. 950 Herndon Parkway, Suite 370, Herndon, VA 20170, US www.rosoka.com

https://medium.com/teads-engineering/estimating-aws-ec2-instances-power-consumption-c9745e347959
https://medium.com/teads-engineering/estimating-aws-ec2-instances-power-consumption-c9745e347959
http://www.rosoka.com

